使用Pandas_Alive做数据可视化,使图表动起来

行云流水
2022-04-22 / 1 评论 / 518 阅读 / 正在检测是否收录...

前言

Pandas_Alive不仅包含动态条形图,还可以绘制动态曲线图、气泡图、饼状图、地图等。本文记录环境安装,数据获取,到最后生成动态gif全过程。

安装模块

安装支持库

# centos
yum -y install libjpeg-turbo-devel python3-devel  ImageMagick

# mac
brew install ImageMagick

安装pandas_alive

pip3 install pandas_alive -i https://mirrors.aliyun.com/pypi/simple/
pip3 install attrs -i https://mirrors.aliyun.com/pypi/simple/

图表支持中文

获取字体并配置

#获取字体放入下面目录
cd /usr/local/lib64/python3.6/site-packages/matplotlib/mpl-data/fonts/ttf

# 清理缓存
cd ~ 
rm -rf .cache/matplotlib

# 修改matplotlibrc  
## 一个#号是配置,##是注释
vim /usr/local/lib64/python3.6/site-packages/matplotlib/mpl-data/matplotlibrc

## 257行
#font.sans-serif: SimHei, DejaVu Sans, Bitstream Vera Sans, Computer Modern Sans Serif, Lucida Grande, Verdana, Geneva, Lucid, Arial, Helvetica, Avant Garde, sans-serif

## 400行
#axes.unicode_minus: False

SimHei.ttf字体文件:



获取matplotlib缓存目录

import matplotlib
matplotlib.get_cachedir()

获取数据

从数据库导出数据

以累计订单按类型分类

bash export.sh  2022-03-01  2022-04-20  0

脚本内容

#!/bin/bash
# 获取指定日期区间内的某类型订单累计金额
start_day=$1
end_day=$2

ordertype=$3

declare -A dic
dic=([0]="未换装电子版" [5]="未换装打印版" [10]="已换装电子版" [15]="已换装打印版")

sql="SELECT
    t1.date as date,
    sum( t2.value ) as '${dic[$ordertype]}'
FROM (
    select
        date_format(create_time, '%Y-%m-%d') as date , sum(price)/100 as value
    FROM
        order_record
    where
        order_status = 10
    and
        order_type = ${ordertype}
    and
        create_time BETWEEN '${start_day}' AND '${end_day}'
    GROUP BY
        date
    ) t1
JOIN (
    select date_format(create_time, '%Y-%m-%d') as date , sum(price)/100 as value
    FROM
        order_record
    where
        order_status = 10
    and
        order_type = ${ordertype}
    and
    create_time BETWEEN '${start_day}' AND '${end_day}'
    GROUP BY
        date
    ) t2
ON
    t1.date >= t2.date
GROUP BY
    t1.date
ORDER BY
    date"

mysql -uroot -pxxxxx  -h 127.0.0.1  kuming  -e "${sql}" >  ./result/${ordertype}.csv

# 将tab替换为,分割
sed -i 's/\t/,/g' ./result/${ordertype}.csv

数据合并


补充日期后,合并成一个csv文件

python3 manager_data.py

脚本内容:

import pandas as pd
from datetime import datetime, timedelta
import time
import os
from functools import reduce

def load_Data(r_file):
  #加载数据
  df0 = pd.read_csv(r_file)
  return df0

#把datetime转成字符串
def datetime_toString(dt):
  return dt.strftime("%Y-%m-%d")

#把字符串转成datetime
def string_toDatetime(string):
  return datetime.strptime(string, "%Y-%m-%d")

#计算日期区间
def day_diff(day1, day2):
    d1 = time.mktime(time.strptime(day1,'%Y-%m-%d'))
    d2 = time.mktime(time.strptime(day2,'%Y-%m-%d'))
    daysec = 24 * 60 * 60
    return int(( d2 - d1 )/daysec)


#缺失值处理,插值替换
def data_Full(r_file):
  df1 = load_Data(r_file)  #加载数据
  date0 = df1.iloc[0, 0] #初始时间
  df1_date = df1['date'].tolist() #数据日期转为列表
  df1_data = df1[df1.keys()[1]].tolist()  #数据值转为列表
  act = day_diff(df1_date[0], df1_date[-1])    #实际期望日期序列长度
  for j in range(0, len(df1_date)):
    if len(df1_date) < act:
      while date0 != df1_date[j]:   #如数据中日期列表与期望日期序列不相等,即存在缺失值执行while程序
        nada = df1_data[j-1]        #计算缺失处左右相邻插值
        adda = [date0, nada]
        date_da = pd.DataFrame(adda).T
        date_da.columns = df1.columns
        df1 = pd.concat([df1, date_da]) #将缺失日期加入数据列表中
        date0 = datetime_toString(string_toDatetime(date0) + timedelta(days=1)) #日期加一
      date0 = datetime_toString(string_toDatetime(date0) + timedelta(days=1)) #日期加一
  df1 = df1.sort_values(by=['date'])
  return df1

if __name__ == "__main__":
    dirs='./data/result/'
    files = os.listdir(dirs)

    app=[]
    for f in files:
        r_file = os.path.join(dirs, f)
        df = data_Full(r_file)
        app.append(df)

    df_final = reduce(lambda left, right: pd.merge(left, right, on='date', how='outer'), app)
    df_final.to_csv('./data/t.csv',index=0,sep=',')

生成动态gif

生成水平条形图

python3 csv_to_gif.py

脚本内容

import pandas_alive
import pandas as pd

covid_df = pd.read_csv('data/t.csv', index_col=0, parse_dates=[0])
covid_df.plot_animated(filename='output/order.gif', n_visible=4)

柱状图

covid_df.plot_animated(filename='output/order.gif', orientation='v', n_visible=4)

曲线图

covid_df.diff().fillna(0).plot_animated(filename='output/order.gif', kind='line', period_label={'x': 0.25, 'y': 0.9})

评论 (1)

取消
只有登录/注册用户才可评论
  1. 头像
    行云流水 作者
    · MacOS · Google Chrome
    沙发

    这篇文章肯定会火,作者666大顺

    回复
  2. 头像
    1111
    · Windows 10 · Google Chrome
    板凳

    1

    回复